Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plast Reconstr Surg ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652859

RESUMO

BACKGROUND: In recent decades, chronic wounds have become an increasingly significant clinical concern due to their increasing morbidity and socioeconomic toll. However, there is currently no product available on the market that specifically targets this intricate process. One clear indicator of delayed wound repair is the inhibition of re-epithelialization. Yes-associated protein (YAP), which is a potential focal point for tissue repair and regeneration, has been shown to be prominent in several studies. In this context, we have identified the pharmacological product TT-10, which is a YAP activator, as a potential candidate for the treatment of various forms of chronic wounds. METHODS: The role of TT-10 in regulating YAP activity and subcellular localization was determined by western blotting and immunofluorescence staining. The effect of TT-10 on the biological functions of keratinocytes was assessed by proliferation, wound healing, and apoptosis assays. The impairment of YAP activity in chronic wounds was measured in human and mouse tissues. The in vivo efficacy of TT-10 was examined by gross examination, H&E staining, and measuring wound areas and gaps in normal, diabetic, and ischemic wounds. RESULTS: Our findings suggest that TT-10 facilitates the nuclear transport of YAP, consequently increasing YAP activity, which in turn increases the proliferation and migration of keratinocytes. Moreover, we showed that intracutaneous injection of TT-10 along the wound periphery promoted re-epithelization via YAP activation in the epidermis, culminating in accelerated wound closure in several chronic wound healing models. CONCLUSIONS: Our research highlights the potential of TT-10 to treat chronic wounds, which is a persistent challenge in tissue repair.

2.
Langmuir ; 40(14): 7422-7432, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38544283

RESUMO

Graphene is one of the most promising thermal protection materials for high-speed aircraft due to its lightweight and excellent thermophysical properties. At high Mach numbers, the extremely high postshock temperature would dissociate the surrounding air into a mixture of atomic and molecular components in a highly thermochemical nonequilibrium state, which greatly affects the subsequent thermal chemical reactions of the graphene interface. Through establishing a reactive gas-solid interface model, the reactive molecular dynamics method is employed in this study to reveal the influences of the thermochemical nonequilibrium gas mixture on the thermal oxidation and nitridation mechanisms of graphene sheet. The results show that three distinctive stages can be recognized during bombardment of various nonequilibrium gas components toward the graphene sheet: (i) collision and surface adsorption stage, (ii) gas-solid heterogeneous reaction stage, and (iii) gas phase homogeneous reaction stage. The surface catalysis effect is found to be dominant during the first two stages, which can influence the following ablation behavior of graphene significantly at high-temperature conditions. Moreover, surface catalysis, oxidation, nitridation, and ablation mechanisms between nonequilibrium gas and graphene interface are revealed, which is of high relevance for future interfacial design and application of graphene as a thermal protection material.

3.
Angew Chem Int Ed Engl ; : e202403670, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470158

RESUMO

A 2×2×1 superstructure of the P63/mmc NiAs structure is reported in which kagome nets are stabilized in the octahedral transition metal layers of the compounds Ni0.7Pd0.2Bi, Ni0.6Pt0.4Bi, and Mn0.99Pd0.01Bi. The ordered vacancies that yield the true hexagonal kagome motif lead to filling of trigonal bipyramidal interstitial sites with the transition metal in this family of "kagome-NiAs" type materials. Further ordering of vacancies within these interstitial layers can be compositionally driven to simultaneously yield kagome-connected layers and a net polarization along the c axes in Ni0.9Bi and Ni0.79Pd0.08Bi, which adopt Fmm2 symmetry. The polar and non-polar materials exhibit different electronic transport behaviour, reflecting the tuneability of both structure and properties within the NiAs-type bismuthide materials family.

4.
Small ; : e2310200, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497491

RESUMO

A new form of pancake bouncing is discovered in this work when a droplet impacts onto micro-structured superhydrophobic surfaces in an environment pressure less than 2 kPa, and an unprecedented reduction of contact time by ≈85% is obtained. The mechanisms of forming this unique phenomenon are examined by combining experimental observation, numeical modelling and an improved theoretical model for the overpressure effect arising from the vaporisation inside micro-scaled structures. The competition among the vapor overpressure effect, the droplet impact force, and the surface adhesion determines if the pancake bouncing behavior could occur. After the lift-off the lamella, the pancake bouncing is initiated and its subsequent dynamics is controlled by the internal momentum transfer. Complementary to the prior studies, this work enriches the knowledge of droplet dynamics in low pressure, which allows new strategies of surface morphology engineering for droplet control, an area of high importance for many engineering applications.

5.
Front Immunol ; 15: 1260191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384459

RESUMO

Background: Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive cancer with a dismal prognosis and few effective therapeutic approaches. This study aimed to investigate the efficacy, safety, and predictive biomarkers of hepatic arterial infusion chemotherapy (FOLFOX-HAIC) in combination with lenvatinib and PD-1 inhibitor for patients with advanced iCCA. Methods: Locally advanced or metastatic iCCA patients receiving the triple combination therapy of lenvatinib, PD-1 inhibitor, and FOLFOX-HAIC were included in this retrospective study. Primary endpoint was the progression-free survival, evaluated using the RECIST criterion. The secondary endpoints included overall survival, objective response rate, and safety. Whole exome and RNA sequencing of tumor biopsy tissues were performed for biomarker exploration. Results: Between May, 2019 and December 2022, a total of 46 patients were included in this study. The primary endpoint showed a median progression-free survival of 9.40 months (95% CI: 5.28-13.52), with a 6-month progression-free survival rate of 76.1%. The median overall survival was 16.77 months (95% CI, 14.20-19.33), with an objective response rate of 47.8% and disease control rate of 91.3% per RECIST. In addition, 4.3% and 8.7% of patients achieved complete response of all lesions and intrahepatic target lesions per mRECIST, respectively. The most common treatment-related adverse events were neutropenia, thrombocytopenia, elevated aspartate aminotransferase and alanine aminotransferase level. Furthermore, integrated analysis of genetic, transcriptomic, and immunohistochemistry data revealed that pre-existing immunity (high expression level of immune-related signatures and intra-tumoral CD8+ T cell density) in baseline tumor tissues was associated with superior clinical benefits. However, the evaluation of tumor mutation burden did not show potential predictive value in this triple combination. Conclusion: FOLFOX-HAIC in combination with lenvatinib and PD-1 inhibitor demonstrated a promising antitumor activity with manageable safety profiles in patients with advanced iCCA. Moreover, our study also revealed new perspectives on potential biomarkers for clinical efficacy.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Leucopenia , Compostos de Fenilureia , Quinolinas , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Estudos Retrospectivos , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos
6.
JHEP Rep ; 6(1): 100939, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38074509

RESUMO

Background & Aims: The mechanism underlying resistance to immunotherapy involves engagement of immune checkpoint pathways. The transcriptional and epigenetic processes of checkpoint molecules, however, have not been well investigated. We thus studied whether the transcription factor myeloid zinc finger 1 (MZF1) may promote resistance to immunotherapy in hepatocellular carcinoma (HCC). Methods: Single-cell RNA-sequencing was performed to study the correlation between MZF1 and tumour microenvironment features in six patients with HCC. Combined immunohistochemistry and multi-immunofluorescence analyses were performed for verification. Ectopic expression of MZF1 was used in both orthotopic and genetically engineered hydrodynamic mouse HCC models for in vivo experiments. Proteome analysis, including protein degradation assays, ubiquitination assays, and co-immunoprecipitation assays, revealed the function of MZF1 in immune checkpoint pathways. Results: Single-cell RNA-sequencing suggested an immunosuppressive environment and a strong correlation with the immune checkpoint programmed death ligand 1 (PD-L1) in MZF1-overexpressing tumours. Analyses of 163 HCC samples demonstrated that MZF1 expression in HCC cells is associated with decreased T-cell infiltration. In vivo experiments showed that ectopic MZF1 expression in HCC cells impairs T-cell recruitment, resulting in resistance to immune checkpoint blockade. Mechanistically, MZF1 accelerated PD-L1 ubiquitination by binding to the cyclin-dependent kinase 4 (CDK4) activation site, while a direct bond between CDK4 and MZF1 led to increased MZF1 expression. Conclusions: MZF1 promotes PD-L1 ubiquitination via CDK4 and possibly MZF1. Inhibition of CDK4 can therefore restore PD-L1 expression and may be a potential strategy for combination with anti-PD-L1 antibodies. Impact and implications: Resistance to immune checkpoint blockade with anti-programmed death ligand 1 (PD-L1) antibody therapy is attributed to oncogenic alterations of tumour cells, however, effective countermeasures are yet to be established. Here, we report that the transcription factor myeloid zinc finger 1 (MZF1) can bind to the cyclin-dependent kinase 4 (CDK4) activation site and accelerate PD-L1 ubiquitination. A CDK4 inhibitor therefore enhances anti-PD-L1 antibody efficacy by blocking MZF1 signalling. This indicates a potential benefit of combining CDK4 inhibitors and anti-PD-L1 antibodies for the treatment of advanced HCC.

7.
Cell Death Dis ; 14(11): 769, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007497

RESUMO

Altered DNA methylation is a crucial epigenetic event in hepatocellular carcinoma (HCC) development and progression. Through methylation-transcriptomic analysis, we identified a set of sixty potential DNA methylation-based epidriver genes. In this set of genes, we focused on the hypermethylation of EMX1, which is frequently observed in hepatobiliary tumors. Despite of its frequent occurrence, the function of EMX1 remains largely unknown. By utilizing bisulfite-next-generation sequencing, we have detected EMX1 DNA hypermethylation on the gene body, which is positively correlated with EMX1 mRNA expression. Further analysis revealed that EMX1 mRNA terminal exon splicing in HCC generated two protein isoforms: EMX1 full length (EMX1-FL) and alternative terminal exon splicing isoform (EMX1-X1). Cellular functional assays demonstrated that gain-of-function EMX1-FL, but not EMX1-X1, induced HCC cells migration and invasion while silencing EMX1-FL inhibited HCC cells motility. This result was further validated by in vivo tumor metastasis models. Mechanistically, EMX1-FL bound to EGFR promoter, promoting EGFR transcription and activating EGFR-ERK signaling to trigger tumor metastasis. Therefore, EGFR may be a potential therapeutic target for EMX1-high expression HCC. Our work illuminated the crucial role of gene body hypermethylation-activated EMX1-FL in promoting tumorigenesis and metastasis in HCC. These findings pave the way for targeting the EMX1-EGFR axis in HCC tumorigenicity and metastasis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Metilação de DNA/genética , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , RNA Mensageiro/metabolismo , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica
8.
Clin Cancer Res ; 29(24): 5104-5115, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37819944

RESUMO

PURPOSE: To investigate the efficacy, safety, and biomarkers of systemic chemotherapy with oxaliplatin, leucovorin, and 5-fluorouracil (FOLFOX) in combination with lenvatinib and toripalimab as the first-line treatment for advanced hepatocellular carcinoma (HCC) with extrahepatic metastasis. PATIENTS AND METHODS: In this biomolecular exploratory, phase II trial, eligible patients underwent the triple combination therapy of lenvatinib, toripalimab, plus FOLFOX chemotherapy. Primary endpoint was progression-free survival (PFS) rate at 6 months by RECIST v1.1. Single-nucleus RNA sequencing (snRNA-seq) of tumor biopsy samples was performed for exploratory biomarker analyses. RESULTS: Between November 19, 2019, and July 4, 2021, 30 patients were enrolled. The primary endpoint was a 6-month PFS rate of 66.7%, with a median PFS of 9.73 months [95% confidence interval (CI), 2.89-16.58]. The median overall survival (OS) was 14.63 months (95% CI, 11.77-17.50), with an objective response rate of 43.3%. Twenty-four (80.0%) patients exhibited high-risk features, among whom the median OS and PFS were 13.7 months (95% CI, 9.24-18.16) and 8.3 months (95% CI, 3.02-13.58), respectively. The most common adverse events were neutropenia, and increased aspartate aminotransferase and alanine aminotransferase levels. Exploratory analyses of snRNA-seq profiles suggested that patients with higher abundance of tumor-infiltrating immune cells were more likely to benefit from this combination. In addition, two subtypes of hepatocytes (AKR1C2+ and CFHR4+ malignant hepatocytes) were associated with reduced clinical benefits. CONCLUSIONS: FOLFOX chemotherapy in combination with lenvatinib and toripalimab showed promising antitumor activity with manageable toxicities in advanced HCC with extrahepatic metastasis. AKR1C2+ and CFHR4+ hepatocyte subtypes may be predictive biomarkers of resistance to the combination therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Fluoruracila , Leucovorina , Biomarcadores , RNA Nuclear Pequeno/uso terapêutico
9.
MedComm (2020) ; 4(4): e319, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37457658

RESUMO

Skin fibrosis, a pathological process featured by fibroblast activation and extracellular matrix (ECM) deposition, makes a significant contribution to morbidity. Studies have identified biomechanics as the central element in the complex network of fibrogenesis that drives the profibrotic feedback loop. In this study, we found that the acetylation of α-tubulin at lysine 40 (K40) was augmented in fibrotic skin tissues. Further analysis showed that α-tubulin acetylation is required for fibroblast activation, including contraction, migration, and ECM deposition. More importantly, we revealed that biomechanics-induced upregulation of K40 acetylation promotes fibrosis by mediating mechanosensitive Yes-associated protein S127 dephosphorylation and its cytoplasm nucleus shuttle. Furthermore, we demonstrated that the knockdown of α-tubulin acetyltransferase 1 could rescue the K40 acetylation upregulation caused by increased matrix rigidity and ameliorate skin fibrosis both in vivo and in vitro. Herein, we highlight the critical role of α-tubulin acetylation in matrix stiffness-induced skin fibrosis and clarify a possible molecular mechanism. Our research suggests α-tubulin acetylation as a potential target for drug design and therapeutic intervention.

10.
Sci Total Environ ; 898: 165531, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37454855

RESUMO

Cigarette butts, as easily overlooked littered wastes, have been evaluated for toxicity in various researches. In this study, we investigated the toxic effects of smoked cigarette butt leachate (SCBL) on the earthworm Eisenia fetida. The results showed the following: 1) E. fetida avoided SCBL in artificial soil, and the avoidance rate was positively correlated with the concentration of SCBL but negatively correlated with the exposure time; 2) the LD50 of SCBL on earthworms at 36 and 48 h of exposure were 3.71 × 10-4 and 2.67 × 10-4 butts/cm2, respectively. Moreover, both the body surface and intestinal tissues of E. fetida were damaged after exposure to SCBL; 3) the survival rates of E. fetida exposed to artificial soil with an SCBL of 3.6 butts/kg for 7 and 14 days were 80.00 ± 7.07 % and 68.00 ± 4.47 %, respectively; and 4) the mean biomass of the surviving E. fetida in all treated groups decreased with increasing SCBL concentration and exposure time. We concluded that SCBL exerted significant negative effects on soil animals, and suggested that SCBs should be collected, detoxified, and reused before entering the natural environment.


Assuntos
Oligoquetos , Poluentes do Solo , Produtos do Tabaco , Animais , Poluentes do Solo/análise , Fumaça , Solo
11.
Phys Rev E ; 107(6-2): 065101, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37464703

RESUMO

Molecular dynamics simulations have been performed to study the dynamics of nanodroplets impacting on a flat superhydrophobic surface and surfaces covered with nanocone structures. We present a panorama of nanodroplet behaviors for a wide range of impact velocities and different cone geometrics, and develop a model to predict whether a nanodroplet impacting onto cone-textured surfaces will touch the underlying substrate during impact. The advantages and disadvantages of applying nanocone structures to the solid surface are revealed by the investigations into restitution coefficient and contact time. The effects of nanocone structures on droplet bouncing dynamics are probed using momentum analysis rather than conventional energy analysis. We further demonstrate that a single Weber number is inadequate for unifying the dynamics of macroscale and nanoscale droplets on cone-textured surfaces, and propose a combined dimensionless number to address it. The extensive findings of this study carry noteworthy implications for engineering applications, such as nanoprinting and nanomedicine on functional patterned surfaces, providing fundamental support for these technologies.

12.
World J Stem Cells ; 15(5): 342-353, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37342214

RESUMO

Pathological scarring and scleroderma, which are the most common conditions of skin fibrosis, pathologically manifest as fibroblast proliferation and extracellular matrix (ECM) hyperplasia. Fibroblast proliferation and ECM hyperplasia lead to fibrotic tissue remodeling, causing an exaggerated and prolonged wound-healing response. The pathogenesis of these diseases has not been fully clarified and is unfortunately accompanied by exceptionally high medical needs and poor treatment effects. Currently, a promising and relatively low-cost treatment has emerged-adipose-derived stem cell (ASC) therapy as a branch of stem cell therapy, including ASCs and their derivatives-purified ASC, stromal vascular fraction, ASC-conditioned medium, ASC exosomes, etc., which are rich in sources and easy to obtain. ASCs have been widely used in therapeutic settings for patients, primarily for the defection of soft tissues, such as breast enhancement and facial contouring. In the field of skin regeneration, ASC therapy has become a hot research topic because it is beneficial for reversing skin fibrosis. The ability of ASCs to control profibrotic factors as well as anti-inflammatory and immunomodulatory actions will be discussed in this review, as well as their new applications in the treatment of skin fibrosis. Although the long-term effect of ASC therapy is still unclear, ASCs have emerged as one of the most promising systemic antifibrotic therapies under development.

13.
Molecules ; 28(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298888

RESUMO

A novel Cr (VI) removal material was designed and produced comprising multi-walled carbon nanotubes (MWCNTs) as a support with a high specific surface area and the loaded Fe-Ni bimetallic particles as catalytic reducing agents. Such a design permits the composite particle to perform the adsorption, reduction, and immobilisation of Cr (VI) quickly and efficiently. Due to MWCNTs' physical adsorption, Cr (VI) in solution aggregates in the vicinity of the composite, and Fe rapidly reduces Cr (VI) to Cr (III) catalysed by Ni. The results demonstrated that the Fe-Ni/MWCNTs exhibits an adsorption capacity of 207 mg/g at pH = 6.4 for Cr (VI) and 256 mg/g at pH 4.8, which is about twice those reported for other materials under similar conditions. The formed Cr (III) is solidified to the surface by MWCNTs and remains stable for several months without secondary contamination. The reusability of the composites was proven by retaining at least 90% of the adsorption capacity for five instances of reutilization. Considering the facile synthesis process, low cost of raw material, and reusability of the formed Fe-Ni/MWCNTs, this work shows great potential for industrialisation.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Cromo/análise , Água , Adsorção , Poluentes Químicos da Água/análise
14.
Front Mol Biosci ; 10: 1132353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968277

RESUMO

Skin fibrosis is a physiopathological process featuring the excessive deposition of extracellular matrix (ECM), which is the main architecture that provides structural support and constitutes the microenvironment for various cellular behaviors. Recently, increasing interest has been drawn to the relationship between the mechanical properties of the ECM and the initiation and modulation of skin fibrosis, with the engagement of a complex network of signaling pathways, the activation of mechanosensitive proteins, and changes in immunoregulation and metabolism. Simultaneous with the progression of skin fibrosis, the stiffness of ECM increases, which in turn perturbs mechanical and humoral homeostasis to drive cell fate toward an outcome that maintains and enhances the fibrosis process, thus forming a pro-fibrotic "positive feedback loop". In this review, we highlighted the central role of the ECM and its dynamic changes at both the molecular and cellular levels in skin fibrosis. We paid special attention to signaling pathways regulated by mechanical cues in ECM remodeling. We also systematically summarized antifibrotic interventions targeting the ECM, hopefully enlightening new strategies for fibrotic diseases.

15.
J Transl Med ; 21(1): 164, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864460

RESUMO

Fibrosis, a process caused by excessive deposition of extracellular matrix (ECM), is a common cause and outcome of organ failure and even death. Researchers have made many efforts to understand the mechanism of fibrogenesis and to develop therapeutic strategies; yet, the outcome remains unsatisfactory. In recent years, advances in epigenetics, including chromatin remodeling, histone modification, DNA methylation, and noncoding RNA (ncRNA), have provided more insights into the fibrotic process and have suggested the possibility of novel therapy for organ fibrosis. In this review, we summarize the current research on the epigenetic mechanisms involved in organ fibrosis and their possible clinical applications.


Assuntos
Metilação de DNA , Epigênese Genética , Humanos , Metilação de DNA/genética , Matriz Extracelular/genética , Processamento de Proteína Pós-Traducional , Pesquisadores
16.
Technol Cancer Res Treat ; 21: 15330338221117389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36529949

RESUMO

Purpose:Sorafenib is recommended for patients with hepatocellular carcinoma refractory to transarterial chemoembolization but with unsatisfactory overall survival and tumor response rate. Previously published studies showed hepatic arterial infusion chemotherapy of oxaliplatin, fluorouracil, and leucovorin was an effective and safe treatment. The aims of this study were to compare the clinical efficacy and safety of oxaliplatin, fluorouracil, and leucovorin-based hepatic arterial infusion chemotherapy with sorafenib in patients with hepatocellular carcinoma refractory to transarterial chemoembolization. Methods: This was a retrospective subgroup analysis of 2 prospective clinical trials, including 114 patients with hepatocellular carcinoma who were confirmed to be transarterial chemoembolization refractoriness. Of these, 55 patients received hepatic arterial infusion chemotherapy of fluorouracil, and leucovorin (FOLFOX-HAIC group, oxaliplatin 85 or 130 mg/m2, leucovorin 400 mg/m2, fluorouracil bolus 400 mg/m2, and 2400 mg/m2 for 23 or 46 h, every 3 weeks), and 59 patients were treated with sorafenib (sorafenib group, 400 mg sorafenib twice daily). Overall survival, progression-free survival, objective response rate, and treatment-related adverse events were compared between the 2 groups. Results: The FOLFOX-HAIC group showed a longer overall survival (17.1 months [95% confidence interval 13.4-20.8] vs 9.1 months [95% confidence interval 7.5-10.6]; hazard ratio 0.35 [95% confidence interval 0.23-0.53]; P < .001), a higher objective response rate (RECIST: 18 [32.7%] vs 1 [1.7%], P < .001), and a longer progression-free survival (7.6 months [95% confidence interval 5.6-9.6] vs 3.9 months [95% confidence interval 2.3-5.4]; hazard ratio 0.49 [95% confidence interval 0.33-0.72]; P < .001) than the sorafenib group. The safety results suggested that both oxaliplatin, fluorouracil, and leucovorin-based hepatic arterial infusion chemotherapy and sorafenib had acceptable treatment-related toxic effects. No significant difference was observed in the overall occurrence of any grade, grade 3/4, or serious adverse events between the 2 groups. Conclusions: Oxaliplatin, fluorouracil, and leucovorin-based hepatic arterial infusion chemotherapy might be a better choice than sorafenib for patients with hepatocellular carcinoma refractory to transarterial chemoembolization.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Sorafenibe , Leucovorina/efeitos adversos , Oxaliplatina , Estudos Retrospectivos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Estudos Prospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Fluoruracila/efeitos adversos , Resultado do Tratamento
17.
RSC Adv ; 12(53): 34369-34380, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36545592

RESUMO

In multiphase materials, structured fluid-fluid interfaces can provide mechanical resistance against destabilization, applicable for conformance control, Pickering emulsion, liquid 3D printing and molding, etc. Currently all research prepare the particle-ladened fluid-fluid interfaces by dispersing ex situ acquired particles to the immiscible interface, which limits their application in the harsh environment, such as oil reservoir which can impair particle stability and transport ability. Here, we investigated the interfacial and assembly properties of the interface where SiO2 nanoparticles (NPs) were in situ produced. The experimental results show that ammonia as catalyst could accelerate the processes of silica NPs formation as well as the interfacial tension (IFT) evolution. High temperature could not accelerate the reaction processes to achieve the lowest equilibrium IFT, but it induced the sine-wave IFT evolution curves regardless of the presence of ammonia. The equilibrium IFTs corresponded to the saturation states of interfaces trapping with SiO2 NPs, while the sine-wave fluctuating patterns of IFT were attributed to the alternating transition between interfacial jammed and unjammed states changing along with the reaction process. Silica NPs diffusing into aqueous phase with high salinity also showed good stability, due to the abundant surface decoration with in situ anchored organic species.

18.
Energy Fuels ; 36(21): 12986-12996, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36366753

RESUMO

Nanoparticle-assisted enhanced oil recovery (Nano-EOR) has attracted intensive interest in the laboratory as a promising oil recovery technology. However, the nanoparticles' stability and long-distance delivery of nanoparticles (NPs) in large-scale reservoirs are two main challenges. In this work, we developed a novel concept of in situ synthesizing NPs at the oil-water interface inside the reservoir for EOR instead of injecting presynthesized NPs from outside. The pore-scale flooding experiments show that EOR efficiencies for tertiary flooding were 6.3% without reaction (Case 3), 14.6% for slow reaction (Case 1), and 25.4% for relatively quick reaction (Case 4). Examination of the EOR mechanism shows that in situ produced SiO2 NPs in microchannels could alter the substrate wettability toward neutral wetting. Moreover, the produced NPs tended to assemble on the immiscible oil-water interface, forming a barrier toward interface deformation. As the reaction continued, excessive surface-modified NPs could also diffuse into aqueous brine and accumulate as a soft gel in the flowing path swept by brine. Collectively, these processes induced a "shut-off" effect and diverted displacing fluids to unswept areas, which consequently increased the sweep efficiency and improved the oil recovery efficiency. Auxiliary bulk-scale experiments also showed that the reaction-induced nanoparticle synthesis and assembly at an immiscible interface reduced the interfacial tension and generated an elastic oil-water interface.

19.
ACS Sustain Chem Eng ; 10(38): 12843-12851, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36189112

RESUMO

Solar evaporation of seawater is promising to mitigate the fresh water scarcity problem in a green and sustainable way. However, salt accumulation on the photothermal material prevents the system continuous operation, and the water supply driven by capillary force severely limits the scale-up of the evaporators. Here, we demonstrate a double-sided suspending evaporator with top water supply and a surface water distributor for high-efficient concurrent solar evaporation and salt harvesting for large area applications. Both sides of the evaporator can evaporate water with automatic salt harvesting from the edge concurrently. Top water supply gets away from the limitation of capillary force for a larger area application and completely cuts off the heat leak to the bulk water below for higher efficiency. The energy conversion efficiency reaches 95.7% at 1.40 kg·m-2·h-1 with deionized water under 1 sun with a remarkable low surface average temperature (28.2 °C). Based on the simulation and experiment, a novel radial arterial water distribution system is developed to efficiently distribute water on a larger evaporation surface. The water distribution system alters the water transport path in the evaporation surface, leading to salt accumulation on the surface body, where salt is unable to be harvested by gravity automatically. This problem is further resolved by cutting out the salt accumulation area (16.4%) on the surface to create a floriform evaporator, which forcedly exposes the salt at the edge for harvesting. Up to70 h continuous solar evaporation from salt water at a rate of 1.04 kg·m-2·h-1 with concurrent salt collection on this floriform evaporator is achieved. This work resolves water supply and salt accumulation problems in scaling up the solar evaporators and advances the structural design of evaporators for high-efficient large area applications.

20.
Theranostics ; 12(15): 6446-6454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185608

RESUMO

The skin epidermis and appendages undergo ongoing renewal throughout life. Stem cells residing in the epidermis and hair follicles are pivotal for sustaining skin homeostasis. The self-renewal ability of stem cells significantly decreases during skin aging but actively increases during wound repair. Residential stem cells reside in niches that provide spatially distinct microenvironments for stem cell maintenance and function. Cell-extracellular matrix (ECM) adhesion is essential for the establishment of niche architecture. Collagen XVII (COL17), as a transmembrane protein constituting hemidesmosomes (HDs), mediates the interactions of stem cells with surrounding cells and the matrix to regulate skin homeostasis, aging and wound repair. This review focuses on the pivotal role of the niche component COL17 in stem cell maintenance and its function in regulation of skin aging and wound repair.


Assuntos
Envelhecimento da Pele , Nicho de Células-Tronco , Autoantígenos/metabolismo , Colágenos não Fibrilares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...